## Soil Settlement Due to Underground Tunnelling in Different Soil Types

**HAMZA SAEED** 

Associate Professor Dr. ERIS UYGAR

Eastern Mediterranean University, Famagusta

























## **Presentation Overview**

























## 1. INTRODUCTION

#### **Ground Deformation Due to Underground Tunnelling**

- . Construction methods
  - NATM
  - Bored Tunnels.

- Modes of ground deformation.
  - Longitudinal Settlements.
  - Transverse Settlements.
    - Vertical deformations.
    - Horizontal deformations

- iii. Analysis Approach.
  - Empirical
  - Analytical
  - Computer Applications

- v. Tunnel Lining Design Approach
  - Forces acting on lining
  - Analytical design solution.
  - The beam-bedded model.









Fig. 1: 3D settlement profile (Attewell et al. 1986)

Fig. 2: Schematic illustration of forces acting on tunnel and analytical solutions.



















## VERTICAL SETTLEMENT

Peck (1969) ---- Gaussian Distribution Curve (Figure 3)

$$S_{v(y)} = S_{max}e^{\left(-\frac{x^2}{2i^2}\right)}$$
 Equation 1

$$S_{max} = \frac{A_T V_L}{i \sqrt{2\pi}} = 1.252 \frac{V_L R^2}{i}$$
 Equation 2

 $S_{v(y)}$ Vertical settlement at any point

 $S_{max}$ Maximum settlement at tunnel crest

 $V_L$ Volume loss (Ground Loss Ratio)

Inflection point

Distance from tunnel center line Χ

R Tunnel radius

**Tunnel Area**  $A_{\tau}$ 

#### Distance to tunnel centreline, x



Fig. 3: Gaussian Settlement Curve



















## **VOLUME LOSS:**

Equation 3  $V_L = V_{L,f} + V_{L,s} + V_{L,t} + V_{L,c}$ 

Tunnel face volume loss.

Volume loss along the shield.

Volume loss at tail.

Volume loss due to consolidation.

**Table 1:** Closed face machines volume loss factors (*Ahmed and Iskander, 2011*)

| Cases                                                     | V <sub>L</sub> (%) |
|-----------------------------------------------------------|--------------------|
| Good practice in stable ground.                           | 0.5                |
| Usual practice in slowly ravelling ground.                | 1.0                |
| Poor practice in the poor ravelling ground.               | 2.0                |
| Poor practice in the poor fast ravelling ground.          | 3.0                |
| Poor practice with little face control in running ground. | ≥ 4.0              |

| $V_{L,f}(\%) = 0.23 e^{4.4 LF}$ | $LF = \frac{N}{N_C}$ | $N = \frac{Z \gamma_n + \sigma_s - \sigma_T}{c_u}$ | $N_C = 2 + 2ln\left(\frac{2C}{D} + 1\right)  (For \ 0 \le \frac{C}{D} \le 1)$ | $N_C = 4ln\left(\frac{2C}{D} + 1\right)  (For \ 1 \le \frac{C}{D} \le 1.8)$ |
|---------------------------------|----------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|

$$V_{L,s}(\%) = \frac{4\delta}{D} \times 100$$

$$V_{L,t} = \frac{V_{s,t}}{\pi \left(\frac{D}{2}\right)^2}$$

$$V_{L,t} = \frac{V_{s,t}}{\pi \left(\frac{D}{2}\right)^2}$$

$$V_{cons} = \sum_{j=1}^{n} u_c^j \Delta x$$

## **DETAILED VOLUME LOSS ANALYSIS**

**Equations.** 4 – 12 (Saeed & Uygar, 2021)



















## **INFLECTION POINT**

#### Table 2: Inflection point estimation equations.

#### **Inflection Point (Homogenous Ground ):**

i = KZ Equation 13

K → Trough width parameter.

 $Z \rightarrow$  Depth to tunnel centerline.

Mair and Taylor (1997)

$$K \rightarrow 0.4 - 0.6 \quad K_{mean} = 0.5$$

 $K \rightarrow 0.25 - 0.45 \ K_{mean} = 0.35$ 

## **Inflection Point (Layered Ground):**

 $i = K_1 Z_1 + K_2 Z_2$  **Equation 14** 

| Ground<br>Condition | Equation                                                               | Reference                        | Ground<br>Condition | Equation                                           | Reference                   |                 |               |
|---------------------|------------------------------------------------------------------------|----------------------------------|---------------------|----------------------------------------------------|-----------------------------|-----------------|---------------|
|                     | $\frac{i}{R} = \left(\frac{Z}{2R}\right)^n \left[n = 0.8 - 1.0\right]$ | Peck, 1969                       |                     | $\frac{i}{R} = \left(\frac{Z}{2R}\right)^{0.8}$    | Clough and<br>Schmidt, 1981 |                 |               |
|                     | $\frac{i}{R} = \left(\frac{Z}{2R}\right)$                              | Attewell and<br>Farmer, 1974     |                     | $\frac{i}{R} = 1.5 \left(\frac{C}{D}\right)^{0.8}$ | Sugiyama et al.,<br>1999    |                 |               |
|                     | $\frac{2i}{D} = \left(\frac{Z}{D}\right)^{0.8}$                        | Cording and<br>Hansmire,<br>1975 | Cohesive soil       | Cohesive soil                                      | Cohesive soil               | i = 0.4 Z + 0.6 | Arioglu, 1992 |
| All soil<br>types   | i = 0.4 Z + 1.92                                                       | Herzog, 1985                     |                     | i = 0.43 Z + 1.1                                   | O'Reilly and<br>New, 1982   |                 |               |
|                     | i = 0.386 Z + 2.84                                                     | Arioglu, 1992                    | Cohesionless        | i = 0.28 Z - 0.1                                   | O'Reilly and<br>New, 1982   |                 |               |
|                     | i = 0.5 Z                                                              | Kimura and<br>Mair, 1981         | soil                | $\frac{i}{R} = \left(\frac{C}{D}\right)^{0.7}$     | Sugiyama et al.,<br>1999    |                 |               |
|                     | $i = 0.9 \left(\frac{D}{2}\right) \left(\frac{Z}{D}\right)^{0.88}$     | Arioglu, 1992                    | Loose sand          | i = 0.25(Z + 0.5R)                                 | Atkinson and<br>Potts, 1977 |                 |               |
|                     |                                                                        |                                  | Dense sand          | i = 0.25(1.5Z + 0.5R)                              | Atkinson and<br>Potts, 1977 |                 |               |

















## 2. Methodology



Fig.3: Research strategy and FEM simulation analysis flowchart



Fig. 4: Plaxis 2D FEM simulation model.

Fig. 5: Mohr-Coulomb model (a) linear elastic-perfectly plastic materials (b) principal stress space

yield surface for  $c'=0, \phi'=30^{\circ}$ 



















## Soil Types: Soft clay, stiff clay, loose sand and dense sand

**Table 3:** Plaxis 2D input soil material properties data set.

| Soil Type                                 | Soft clay    | Stiff clay        | Loose        | Dense sand   |
|-------------------------------------------|--------------|-------------------|--------------|--------------|
|                                           |              |                   | sand         |              |
| Saturated unit weight,                    | 40           | 40                | 40           | 00           |
| $\gamma_{sat}$ (kN/m <sup>3</sup> )       | 16           | 19                | 19           | 20           |
| Cohesion, c <sup>'</sup> (kPa)            | 5            | 25                | 0.1          | 0.1          |
| Friction angle, $\phi^{'}$ ( $^{\sf O}$ ) | 22           | 26                | 30           | 35           |
| Modulus of elasticity, E (kPa)            | 2600         | 8500              | 15000        | 40000        |
| Poisson's ratio, v                        | 0.33         | 0.20              | 0.30         | 0.30         |
| Material behaviour                        | Undrained    | Undrained         | Drained      | Drained      |
| References                                | Wand et al., | Likitlersuang, et | Kanagaraju,  | Möller, 2006 |
|                                           | 2003         | al., 2014         | et al., 2020 |              |

## **Tunnel lining**

**Table 4:** Plaxis 2D input tunnel lining properties data set.

| •                                          | 01 1                   |                        |                        |
|--------------------------------------------|------------------------|------------------------|------------------------|
| Tunnel diameter, D (m)                     | 8.30                   | 6.30                   | 6.13                   |
| Tunnel thickness, t (m)                    | 0.35                   | 0.30                   | 0.20                   |
| Poisson's ratio, v                         | 0.20                   | 0.15                   | 0.15                   |
| Normal stiffness,EA (kN/m)                 | 1.05 x 10 <sup>7</sup> | 8 x 10 <sup>6</sup>    | 7 x 10 <sup>6</sup>    |
| Flexural rigidity,EI (kNm <sup>2</sup> /m) | 1.07 x 10 <sup>5</sup> | 5.60 x 10 <sup>4</sup> | 3.65 x 10 <sup>4</sup> |
| Specific weight, w (kN/m/m)                | 8.8                    | 7.5                    | 6                      |
| Material behaviour                         | Elastic                | Elastic                | Elastic                |
| References                                 | Möller, 2006           | Likitlersuang,         | Wand et al.,           |
|                                            |                        | et al., 2014           | 2003                   |





















## **SIMULATION STAGES:**

3 Staged Analysis

1<sup>st</sup> Stage → Initial effective stresses.

 $2^{nd}$  Stage  $\rightarrow$  Installation of tunnel lining.

3<sup>rd</sup> Stage → Removal of soil inside tunnel and *uniform* 

contraction method.

#### **Initial Conditions:**

- Water pressure  $\rightarrow$  Genreal phreatic level (z = 0)
- Effective stress  $\rightarrow K_o$  (*Jáky's* formulation)

$$K_o = 1 - \sin(\phi')$$

Volume Loss variation:

 $V_L \rightarrow 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0$  (%)

Tunnelling depth variation:

Based on **D/Z < 1** (Z = 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 m)

$$Total\ contraction = \frac{Tunnel\ original\ area - Tunnel\ area\ at\ current\ step}{Tunnel\ original\ area}$$

**Equation 15** 

















## 3. Results and Discussions



Distance to tunnel centerline, x (m) 10 20 -5 -10 -15 -20 i points -25 -30 -35 -40 -45 --- Z = 9m --- Z = 11m --- Z = 15m --- Z = 17m Z = 19m Z = 21m Z = 23m Z = 25m---Z = 27m ---Z = 29m ---Z = 31m • i

**Fig.6:** Settlement profile of tunnel at different depths

**Fig. 7:** Maximum settlement at ground surface of tunnel at different depths.

**Fig. 8:** Inflection point location on settlement profile.



















Fig. 9: Volume loss effect on the settlement



**Fig. 10:** Variation of settlement with respect to *D/Z* 





















**North Cyprus** 



Fig. 11: Normalized multivariable variations for settlement versus volume loss and depth

$$\frac{S_{max}}{Z} = \alpha V_L \left(\frac{D}{Z}\right)^{\kappa}$$
 Equation 16

Table 5: Equation fitting coefficients

| Soil Types  | Constant $lpha$ | Power exponent $\kappa$ |
|-------------|-----------------|-------------------------|
| Dense Sand  | 0.8011          | 1.909                   |
| Loose Sand  | 1.1200          | 1.870                   |
| Stiff Clays | 0.4052          | 1.690                   |
| Soft Clays  | 0.5403          | 1.799                   |























**Fig. 12:** Effect of volume loss on the inflection point.

Fig. 13: Effect of diameter on the inflection point





**Table 7:** Accuracy range of proposed  $S_{max}$  equation.

| Soil Type  | Mean Absolute<br>Percent Error<br>MAPE | Determination coefficient $R^2$ | Correlation<br>coefficient<br><i>R</i> |  |  |  |  |  |  |  |
|------------|----------------------------------------|---------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| Dense sand | 10.00                                  | 0.8778                          | 0.9340                                 |  |  |  |  |  |  |  |
| Stiff clay | 25.02                                  | 0.9797                          | 0.9898                                 |  |  |  |  |  |  |  |
| Soft clay  | 18.31                                  | 0.9444                          | 0.9718                                 |  |  |  |  |  |  |  |
| Overall    | 17.98                                  | 0.9517                          | 0.9756                                 |  |  |  |  |  |  |  |



Fig. 15:  $S_{max}$  Table 2 equations comparative validation with  $S_{max,field}$ 























Fig. 16: Comparison between FEM and *Table 2* inflection points equations





















| T#       |            | VL-<br>refs. | Eq. 1      | 6      | Pecl<br>(1969<br>n=0. | 9),      | Pecl<br>(1969<br>n=0. | 9),      | Pec<br>(196<br>n=1.    | 9),      | Fa                       | Attewell &<br>Farmer<br>(1974) |                         | Farmer |               | Farmer |             | Farmer |             | Farmer      |              | Farmer                   |                       | Farmer                |                          | Farmer |              | Farmer                    |                     | Farmer       |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | Farmer |  | armer |  | r Hansı |  | Cording &<br>Hansmire<br>(1975) |  | Herzog<br>(1985) |  |  |  |  | ssop<br>978) | Arioglu<br>(1992) <sup>b</sup> |  | O'Rei<br>New ( |  |  | Sugiyama et<br>al. (1999) |  | Atkinsoi<br>Potts (19 |  |
|----------|------------|--------------|------------|--------|-----------------------|----------|-----------------------|----------|------------------------|----------|--------------------------|--------------------------------|-------------------------|--------|---------------|--------|-------------|--------|-------------|-------------|--------------|--------------------------|-----------------------|-----------------------|--------------------------|--------|--------------|---------------------------|---------------------|--------------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|--------|--|-------|--|---------|--|---------------------------------|--|------------------|--|--|--|--|--------------|--------------------------------|--|----------------|--|--|---------------------------|--|-----------------------|--|
| 1        | þ          | 0.7          | 0.74       | *      | 0.87                  | 1        | 0.94                  | 1        | 1                      | 1        | 1                        |                                | 1                       | 0.87   | 1             | 1      | .03 1       | 1.1    | 12 ↑        | 1           | 1            | 0.83                     | 1                     | 0.55                  | 1                        | 0.     | .67          | ≈                         | 0.82                | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 2        | Dense Sand | 0.5          | 0.61       | 1      | 0.71                  | 1        | 0.77                  | 1        | 0.83                   | 1        | 0.83                     | 3                              | 1                       | 0.71   | 1             | 0      | .89 1       | 0.9    | 7 1         | 0.83        | 1            | 0.68                     | 1                     | 0.46                  | *                        | 0.     | .55          | ≈                         | 0.67                | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 3        | ense       | 3.9          | 3.73       | *      | 4.15                  | *        | 4.72                  | 1        | 5.37                   | 1        | 5.37                     | 7                              | 1                       | 4.15   | *             | (      | 5.2 ↑       | 6.9    | 7 1         | 5.37        | 1 ↑          | 4.14                     | *                     | 2.91                  | 1                        | 3.     | .29          | 1                         | 4.21                | *            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 4        | 1          | 1.3          | 1.12       | J      | 1.27                  | ≈        | 1.42                  | ≈        | 1.59                   | 1        | 1.59                     | •                              | 1                       | 1.27   | *             | 1      | 1.6         | 1.7    | 1 ↑         | 1.59        | 1            | 1.25                     | *                     | 0.87                  | 1                        |        | 1            | 1                         | 1.26                | *            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 0        | verall     |              | ≈          |        | *                     |          | 1                     |          | 1                      |          |                          | 1                              |                         |        | <b>≈</b>      |        | 1           |        | 1           |             | 1            | *                        | ×                     | 1                     | ļ                        |        | 1            |                           | *                   |              |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| T#       |            | VL-<br>refs  | Eq. 1      | 6      | Pecl<br>(1969<br>n=0. | 9),      | Peck<br>(1969<br>n=0. | 9),      | Peck<br>(1969<br>n=1.0 | ),       | Attew<br>& Farm<br>(1974 | ner                            | Cordir<br>Hansn<br>(197 | nire   | Herzo<br>(198 |        |             |        | Glos<br>(19 |             | Ario<br>(199 |                          | Cloug<br>Schn<br>(198 | nidt                  | Sugiya<br>et al<br>(1999 | .      | Ario<br>(199 |                           | O'Rei<br>Ne<br>(19  | w            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 5        |            | 1.6          | 1.4        | ļ      | 1.1                   | 1        | 1.4                   | 1        | 1.6                    | *        | 1.6                      | ≈                              | 1.1                     | ↓      | 1.5           | *      | 1.6         | *      | 1.6         | *           | 1.2          | 1                        | 1.1                   | 1                     | 1.6                      | ≈      | 1.4          | 1                         | 1.5                 | *            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 6        |            | 0.8          | 0.9        | 1      | 0.6                   | 1        | 0.6                   | <b>J</b> | 0.6                    | 1        | 0.6                      | 1                              | 0.6                     | 1      | 0.7           | 1      | 0.8         | *      | 0.6         | 1           | 0.5          | ↓                        | 0.6                   | 1                     | 0.6                      | Ţ      | 0.6          | 1                         | 0.6                 | $\downarrow$ |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 7        |            | 6            | 4.2        | 1      | 3.4                   | 1        | 4.1                   | <b>↓</b> | 5                      | 1        | 5                        | 1                              | 3.4                     | 1      | 5             | 1      | 5.4         | 1      | 5           | 1           | 3.6          | 1                        | 3.4                   | 1                     | 4.8                      | 1      | 4.3          | 1                         | 4.9                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 8        | ıy         | 0.15         | 0.25       | 1      | 0.18                  | 1        | 0.2                   | 1        | 0.22                   | 1        | 0.22                     | 1                              | 0.18                    | 1      | 0.23          | 1      | 0.24        | 1      | 0.22        | 1           | 0.18         | 1                        | 0.18                  | 1                     | 0.23                     | 1      | 0.19         | 1                         | 0.22                | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 9        | Stiff Clay | 3.3          | 3.7        | 1      | 2.8                   | 1        | 3.1                   | ~        | 3.5                    | *        | 3.5                      | ~                              | 2.8                     | 1      | 3.5           | 1      | 3.6         | 1      | 3.5         | 1           | 2.7          | 1                        | 2.8                   | 1                     | 3.7                      | 1      | 3            | 1                         | 3.4                 | ×            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 10       | Sti        | 2.82         | 3.1        | 1      | 2.33                  | 1        | 2.6                   | *        | 2.9                    | *        | 2.9                      | *                              | 2.33                    | 1      | 2.91          | 1      | 3.11        | 1      | 2.91        | *           | 2.29         | 1                        | 2.33                  | 1                     | 3.02                     | 1      | 2.51         | 1                         | 2.84                | *            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 11       |            | 0.5          | 0.3        | Ţ      | 0.2                   | 1        | 0.2                   | ↓        | 0.2                    | Ţ        | 0.2                      | 1                              | 0.2                     | 1      | 0.2           | 1      | 0.3         | 1      | 0.2         | 1           | 0.2          | Ţ                        | 0.2                   | 1                     | 0.3                      | Ţ      | 0.2          | 1                         | 0.2                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 12       |            | 0.75         | 0.72       | *      | 0.55                  | 1        | 0.64                  | ↓        | 0.73                   | ≈        | 0.73                     | *                              | 0.55                    | 1      | 0.69          | *      | 0.73        | *      | 0.73        | *           | 0.56         | 1                        | 0.55                  | 1                     | 0.74                     | ≈      | 0.62         | 1                         | 0.69                | *            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 13       |            | 0.6          | 0.5        | *      | 0.3                   | 1        | 0.3                   | ↓        | 0.4                    | Ţ        | 0.4                      | 1                              | 0.3                     | ↓      | 0.4           | ↓      | 0.4         | 1      | 0.4         | 1           | 0.3          | Ţ                        | 0.3                   | 1                     | 0.4                      | Ţ      | 0.3          | 1                         | 0.4                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 0        | verall     |              | *          |        | 1                     |          | 1                     |          | *                      |          | *                        |                                | 1                       |        | *             |        | *           | :      | *           |             | 1            |                          | 1                     | ı                     | *                        |        | 1            |                           | *                   |              |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| T#       |            | VL-<br>refs  | Eq. 1      | .6     | Pecl<br>(1969<br>n=0. | 9),      | Pecl<br>(1969<br>n=0. | 9),      | Peck<br>(1969<br>n=1.0 | 9),      | Attew<br>& Farr<br>(197  | ner                            | Cordi<br>Hans<br>(19)   | mire   | Herz<br>(198  |        | Ario<br>(19 |        | Glo:<br>(19 | ssop<br>78) | Ario<br>(19  | oglu<br>92) <sup>b</sup> | Sch                   | ıgh &<br>midt<br>981) | Sugiy<br>et a<br>(199    | al.    |              | oglu<br>192) <sup>c</sup> | O'Rei<br>Ne<br>(198 | w            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 14       |            | 13.7         | 12.4       | Ţ      | 10.7                  | 1        | 12.4                  | 1        | 14.3                   | *        | 14.3                     | *                              | 10.7                    | 1      | 16.7          | 1      | 18.8        | 1      | 14.3        | *           | 10.8         | Ţ                        | 10.7                  | ' ↓                   | 14.5                     | 1      | 13.1         | . ≈                       | 15.3                | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 15       |            | 2.5          | 3          | 1      | 2.6                   | ≈        | 2.9                   | 1        | 3.2                    | 1        | 3.2                      | 1                              | 2.6                     | ~      | 3.6           | 1      | 3.9         | 1      | 3.2         | 1           | 2.5          | 1                        | 2.6                   | *                     | 3.4                      | 1      | 2.9          |                           | 3.3                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 16<br>17 |            | 4.4          | 3.7<br>4.2 | ↑<br>~ | 3.2                   | <b>↑</b> | 3.6                   | 1        | 3.9                    | <u>↑</u> | 3.9                      | <b>↑</b>                       | 3.2                     | 1      | 5.7           | 1      | 6.9         | 1      | 3.9         | 1           | 3.1          | 1                        | 3.2                   | 1                     | 3.7                      | 1      | 3.6          | 1                         | 4.1                 | ↑<br>↑       |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 18       | lay        | 5.6          | 3.5        | ≈      | 3.6                   | 1        | 3.6                   | 1        | 4.4                    | <b>→</b> | 4.4                      | 1                              | 3.6                     | 1      | 4.5           | 1      | 4.8         | 1      | 4.4         | 1           | 3.4          | 1                        | 3.6                   | 1                     | 4.2                      | 1      | 3.9          | 1                         | 4.8                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 19       | Soft Clay  | 5.5          | 4.6        | 1      | 4                     | 1        | 4.4                   | 1        | 4.9                    | 1        | 4.9                      | 1                              | 4                       | 1      | 5             | 1      | 5.4         | *      | 4.9         | 1           | 3.9          | 1                        | 4                     | 1                     | 5.1                      | *      | 4.3          | 1                         | 4.9                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 20       | S          | 3.6          | 3.1        | Ţ      | 2.6                   | Ţ        | 2.9                   | ↓        | 3.3                    | *        | 3.3                      | *                              | 2.6                     | 1      | 3.3           | *      | 3.5         | *      | 3.3         | *           | 2.6          | 1                        | 2.6                   | 1                     | 3.4                      | *      | 2.8          | 1                         | 3.2                 | Ţ            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 21       |            | 0.3          | 0.3        | *      | 0.2                   | Ţ        | 0.3                   | *        | 0.3                    | ~        | 0.3                      | *                              | 0.2                     | 1      | 0.3           | *      | 0.3         | *      | 0.3         | ~           | 0.2          | 1                        | 0.2                   | 1                     | 0.3                      | *      | 0.3          | *                         | 0.3                 | *            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 22       |            | 1.4          | 1.5        | *      | 1.3                   | ↓        | 1.5                   | ≈        | 1.7                    | 1        | 1.7                      | 1                              | 1.3                     | 1      | 1.7           | 1      | 1.7         | 1      | 1.7         | 1           | 1.3          | 1                        | 1.3                   |                       | 1.8                      | 1      | 1.4          | *                         | 1.6                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 23       | verall     | 3.1          | 3.3        | *      | 2.8                   | ↓        | 3.1                   | *        | 3.5                    | 1        | 3.5                      | 1                              | 2.8<br>J                | ↓ ↓    | 4.1           | 1      | 4.7         | ↑<br>• | 3.5         | 1           | 2.8          | <b>1</b>                 | 2.8                   | <b>↑</b>              | 3.6                      | Î      | 3.2          | ≈<br>~                    | 3.8                 | 1            |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |
| 0        | verall     |              | ≈          |        | 1                     |          | ≈                     |          | ≈                      |          | ≈                        |                                | 1                       |        |               |        |             |        | 7           | ×           | ,            | ,                        |                       | Ψ                     |                          |        |              | ≈                         |                     |              |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |       |  |         |  |                                 |  |                  |  |  |  |  |              |                                |  |                |  |  |                           |  |                       |  |

**Fig. 17:** Back analysis for volume loss required to match  $S_{max}$ 

≈ Lower V<sub>L</sub> Required V<sub>L</sub> Reference Higher V<sub>L</sub> Required





















**North Cyprus** 

## **TUNNEL LINING FORCES**

## Basic assumptions:

- 1. Cross-section in plane strain condition.
- 2. Cross-section is circular
- 3. Soil stresses are assumed as equivalent to initial stresses.

- 4. Bond between tunnel lining and ground.
- 5. Elastic behaviour of material (soil and lining).

| Basic Model (Bakker, 2003)                    | Initial soil stresses considered.                   | Does not account soil structure interaction |
|-----------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| Analytical Method (Schulze and Duddek, 1964)  | The bedding model with complete and closed solution |                                             |
| Continuum Model ( <i>Ahrens et al. 1982</i> ) | Complete solution                                   |                                             |





















**Fig. 19:** Variation of  $\sigma'_{v}/\sigma'_{o}$  with  $S_{max}$ 



















14 -17 Eylül 2022 14 - 17 September 2022

**North Cyprus** 

#### **Shallow Tunnels**





Fig. 20: Analytical and Numerical models comparison for lining forces (Zhao et al., 2017).



















## 4. Conclusions

- The proposed maximum settlement equation was developed based on the FEM simulation by selecting parametric studies' material and tunnel lining properties.
- The accuracy of the proposed maximum settlement prediction equation was validated using data from the literature
  on tunnelling in different soil types.
- The tunnel diameter was observed to be effective only at shallow depths, and the volume loss indicated no significant correlation with the location of the inflection point.
- The stress-relaxation and lining forces plays a crucial role in the final design of tunnel linings.



















# THANK YOU!



















