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Soil formation from tailings disposed behind dams u;ieg

DO RIO GRANDE DO SUL

3D modelling of the whole process of tailings disposal through spigotting, transport of sediments,
sedimentation and consolidation simulating soil formation behind dams

This study was carried out in order to produce a tool to establish the mass of tailings to be stored in the
reservoir
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Consoli, N.C.; Sills, G. C. (2000)

“Soil formation from tailings: Comparison of predictions and field measurements”
Géotechnique, ICE/UK, v. 50, n.1, p. 25-33
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Soil formation from tailings disposed behind dams UrRcs
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This study was carried out in order to produce a tool to establish the mass of tailings
to be stored in the reservoir.
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Consoli, N.C.; Sills, G. C. (2000)
“Soil formation from tailings: Comparison of predictions and field measurements”
Géotechnique, ICE/UK, v. 50, n.1, p. 25-33
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Brumadinho upstream tailings dam failure (Brazil) eSS

https://g1.globo.com/globonews/estudio-i/video/video-mostra-momento-exato-do-rompimento-da-barragem-da-
vale-em-brumadinho-7347700.ghtmi
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Particle breakage
associated to field
compaction of filtered
ore tailings for dry
stacking
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Filtered tailings improvement through Compaction =~ UFRGS
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When somebody is talking about mechanical behaviour of filtered tailings under high confining stresses, ones is talking
about alternative ways of disposing ore tailings by stacking up to 300 meters (or even more) in a safe way, avoiding any
possibility of liquefaction/failure.

For doing so, there is a knowledge acquired regarding ground improvement that can help in looking for possible solutions.
Looking at the field, the first and most popular improvement technique is soil/filtered tailings compaction.

Towed 22 tonnes three-sided impact

22 tonnes vibratory roller compactor compactor roller (effective to 2-4 m depth)
(to compact layers of up to about 50 cm)

Another point to be noted is that the production of ore tailings might be in the order of 50,000-100,000 tonnes per day
in a unique place, needing to think about alternatives to compacting layers of about 30-50 cm with standard
compaction equipment, by using impact compactor rollers.




Particle breakage associated to field compaction of $
. . - . UFRGS
filtered iron ore tailings for dry stacking R

Tailings dry stack are compacted in layers from the use of drum rollers that causes compaction and vibration efforts on the ground. Particle
breakage is usually observed in granular materials when subjected to external loads as occurs with the increase of the dry stack height. However,
the particle breakage also may occur during the layers' compaction. An iron ore tailings (53.60% fine sand, 39.90% silt, 6.40% clay size presenting
78.4% of quartz and 17.2% of iron oxide) classified as silty sand (SM) was subject to cyclic oedometer, compaction (Proctor at standard and

modified effort), and vibration (determination of maximum index density) tests. Particle size distribution analyses were performed before and after
testing all specimens.

The influence of vibration on particle breakage was evaluated considering the recommendations of ASTM D4253. This standard presents test
methods for the determination of the maximum index density of cohesionless soils using a vertically vibrating table.

The compaction characteristics of the tailings studied were assessed under standard and modified efforts following the recommendations of ASTM
D698 and ASTM D1557, respectively

Cyclic oedometer tests were used to simulate the compaction of both tailings with drum rollers at field. Three pressures defined (1.9, 12.5, and
83.3 MPa) and considering the 100 mm sample diameter, the axial forces chosen for oedometer tests were 15, 100, and 700 kN respectively.
Similar to the roller compaction, a loading frequency of 35 Hz was chosen, in addition to a lower frequency (10 Hz) to evaluate this influence.
Also, 100, 1000, and 10000 cycles were adopted in the loadings to simulate different numbers of passes of the roller .
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Consoli, N.C. et al. (2022).
“On the particle breakage associated to field compaction of iron ore tailings for dry

stacking.” Geotechnique Letters, ICE/UK (to be submitted for publication)




Particle breakage
associated to high
pressures (due to filtered
compacted tailings dry
stacking)



Tailings particle breakage when submitted to high pressures UI%GS

due to dry stack R
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Particle size distribution of two distinct gradings of untested and tested ore tailings.




Main option studied in
Brazil to substitute
upstream tailings dam:
Filtered compacted dry
stacking (300 m high)



Influence of Grading and Fabric Arising from the Initial Compaction &
on the Geomechanical Characterisation of Compacted Copper ~ UFRGS
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Copper tailings’ collection points.

Velten, R.Z.; Consoli, N.C. et al. (2022).
“Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.”
Géotechnique (accepted for publication).




Influence of Grading and Fabric Arising from the Initial Compaction 9
on the Geomechanical Characterisation of Compacted Copper ~ UFRGS

Samples

Parameters
upper beach lower beach

Specific gravity — G, 2.844 2.943
Gravel (%) 0 0
Coarse sand (%) 1.5 0
Medium sand (%) 61.0 20.0
Fine sand (%) 25.0 54.5
Silt (%) 10.5 22.5
Clay (%) 2.0 3.0
LL (%) - -
IP (%) Non-plastic Non-plastic
ASTM-USCS Classification SM SM
Maximum void ratio — e, 1.050 1.127
0.831 0.842
Standard Proctor optimum moisture content —w,,,, (%) 3.12 5.43

Minimum void ratio — e

min

Standard Proctor maximum dry density — Ygm.x (KN/m?) 16.68 17.26

Physical properties of copper tailings.

Velten, R.Z.; Consoli, N.C. et al. (2022).
“Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.”
Géotechnique (accepted for publication).




Influence of Grading and Fabric Arising from the Initial Compaction
on the Geomechanical Characterisation of Compacted Copper UFRGS
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Triaxial tests outcomes from specimens moulded using samples of the upper beach tailings: CID tests & CIU tests.

Velten, R.Z.; Consoli, N.C. et al. (2022).
“Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.”
Géotechnique (accepted for publication).




Influence of Grading and Fabric Arising from the Initial Compaction 9
on the Geomechanical Characterisation of Compacted Copper ~ UFRGS
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Isotropic compression data of the upper beach tailings.

Velten, R.Z.; Consoli, N.C. et al. (2022).

“Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.”
Géotechnique (accepted for publication).




Influence of Grading and Fabric Arising from the Initial Compaction 9
on the Geomechanical Characterisation of Compacted Copper ~ UFRGS
Tailings
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Stress paths and critical state lines in the q - p” space for samples of the upper beach tailings.

Velten, R.Z.; Consoli, N.C.; et al. (2022).
“Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.”

Géotechnique (accepted for publication).




Influence of Grading and Fabric Arising from the Initial Compaction 9
on the Geomechanical Characterisation of Compacted Copper ~ UFRGS
Tailings
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Critical state lines in the v—log p” space for samples of the lower beach tailings.

Velten, R.Z.; Consoli, N.C.; et al. (2022).
“Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings.”
Géotechnique (accepted for publication).




Another option studied
in Brazil to substitute
tailings dam:
Filtered compacted

cemented dry stacking
(300 m high)



Dry Stacking Compacted Cemented Tailings
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Consoli, N. C.; Vogt, J. C.; Silva, J. P; Chaves, H. M.; Scheuermann Filho, H. C.; Moreira, E. B.; Lotero, A. (2022). Behaviour
of compacted filtered iron ore tailings—Portland cement blends: New Brazilian trend for tailings disposal by stacking.

Applied Sciences, 12, 836 (DOI: 10.3390/app12020836).



POROSITY/BINDER INDEX  ~~J2OS_

Paradigm break: porosity/binder index

Consoli et al.(2007)developed a

rational methodology that considers both the porosity and
the quantity of cement through the inde n/C,,. This ratio is
between the porosity of the compacted mixture (n) and the
volumetric cement content (C,;, ) that is added to the mixture

Vroral

where V= volume of voids (water + air) of the specimen;

V.= volume of cement of the specimen; and V., = total
volume of the specimen.

Consoli, N.C.; Foppa, D.; Festugato, L.; Heineck, K.S. (2007)
“Key parameters for strength control of artificially cemented soils”
Journal of Geotechnical and Geoenvironmental Engineering, v. 133 (2), p. 197-205.




POROSITY/BINDER INDEX  ~~J2OS_

Paradigm break: porosity/binder index
controls the unconfined compressive strength
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Consoli, N.C.; Foppa, D.; Festugato, L.; Heineck, K.S. (2007)
“Key parameters for strength control of artificially cemented soils”
Journal of Geotechnical and Geoenvironmental Engineering, v. 133 (2), p. 197-205
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POROSITY/BINDER INDEX  “~J20S_

Theorethical derivation of the porosity/binder index
controlling the unconfined compressive strength

Diambra et al. (2017) established a theoretical derivation of the porosity/binder index.
Knowing that the artificially cemented soil composite material is composed of the soil phase
(the granular matrix) and the cement phase, assuming isotropy of the material, behavior of the
cemented soil at the failure point being determined by superposing the strength contributions
of both phases, failure of the composite cemented material occurs as a result of a
simultaneous failure of both the cemented and soil matrix phases, strain compatibility
between the composite and its two phases and defining the state parameter in terms of the
material porosity (n), the following equation was derived:

_ 6MoS(—0.6+ 045K ) (1
T 100[K.(1—3) +3(B+ 1)) \c/*

‘?u

Diambra, A.; Ibraim, E.; Peccin, A,; Consoli, N.C.; Festugato, L. (2017)
“Theoretical derivation of artificially cemented granular soil strength”
Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 04017003.
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POROSITY/BINDER INDEX  ~2=
UFRGS
o Porosity/cement ratio (n/C;,)

A 3% cement (STS)

* 5% cement (STS) [controls not only the unconfined compressive

% 7% cement (STS)
P strength, but also tensile strength, triaxial
mpspeermeprper [ B kgl i failure envelope, stiffness (Go, Bo) amongst
R =098 Vet (5 other mechanical properties]
% 7% cement (UCS)
x 9% cement (UCS)
+12% cement (UCS)

q. and g, (kPa)

g = 4266[n/C.] ¥
R?=0.97

Variation of both splitting tensile (g,) and unconfined com-
pressive strengths (g,) with voids/cement ratio

Consoli, N.C.; Cruz, R.C.; Floss, M.F.; Festugato, L. (2010)
“Parameters controlling tensile and compressive strength of artificially cemented sand”

Journal of Geotechnical and Geoenvironmental Engineering, v. 136, p. 759-763
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POROSITY/BINDER INDEX \g%

UFRGS

Osorio uniform sand G, (MPa) = 17-504 [y/(C,)" "] "™ R? = 0-92
Porto well-graded SM G, (MPa) = 1 < 10° [pi(C,) " *" ** R = 089

A Osorio uniform sand, 2% cement
4 Osorio uniform sand, 3% cement
*  Qsorio uniform sand, 5% cement
Osorio uniform sand, 7% cement
Porto well-graded SM, 2% cement
4 Porto well-graded SM, 3% cement
< Porto well-graded SM, 5% cement

o Porto well-graded SM, 7% cement

JH[LCN)G’!WSN

Variation of initial shear modulus Gy for both cemented soils (uniform sand and very well-
graded silty sand) with adjusted porosity/cement ratio

Consoli, N.C.; Viana da Fonseca, A.; Cruz, R.C.; Silva, S.R.; Fonini, A. (2012)

“Parameters controlling stiffness and strength of artificially cemented soils”
Géotechnique, v. 62, p. 177-183
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POROSITY/BINDER INDEX i

Confining Pressure = 400kPa
VviNce~10

---- TRI 15 (e=0.70; CC=8.6%)

—TRI 18 (e=0.80, CC=10.3%)

ENG

UFRGS

Triaxial results on
sand-cement blends:
unique deviatoric
stress - axial strain
curve

(unique n/Civ but triaxial
tests with distincts cement
contents and distinct
porosities)

Consoli, N.C.; Viana da Fonseca, A.; Cruz, R.C.; Heineck, K.S. (2009)
“Fundamental parameters for the stiffness and strength control of artificially cemented sand.”
Journal of Geotechnical and Geoenvironmental Engineering, v. 135(9), p. 1347-1353




Sand-Cement Dosage (Clean Sands)

Shapes of studied sands using a scanning
electron microscope (SEM): (a) angular silica
sand obtained as a by-product of agate
polishment; (b) rough sand made from
crushed basalt; (¢) granitic Porto sand; (d)
rounded Osorio sand

Consoli et al. (2017).

“Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils”.
Journal of Materials in Civil Engineering 29 (6), 06017004




Y. sand-Cement Dosage (Clean Sands)

Sand from Agate + PC Ill - Compression - 7 Days

C (%)

Unconfined compressive strength (q,) of silica sand obtained as a by-product of agate
polishment treated with early strength Portland cement content for three distinct void
ratio and 7 days as curing period.

Consoli et al. (2017).
“Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils”.
Journal of Materials in Civil Engineering, 29 (6), 06017004




Sand-Cement Dosage (Clean Sands)
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vl
80 100 120

Examples of best-fit curves of g, (or q,) versus #/C;, for studied sands treated
with Portland cement

Consoli et al. (2017).

“Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils”.
Journal of Materials in Civil Engineering, 29 (6), 06017004




Sand-Cement Dosage (Clean Sands)

g — ® @ © Osorio Sand + PC IIl - Compression - 3 Days
Osorio Sand + PC Ill - Compression - 7 Days
- @ © @ Osorio Sand + PC Il - Compression - 28 Days
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Normalization of q, or g, (for the whole range of n/C,,) by dividing for q, or q, at n/C,,

= 20, considering distinct Portland cement types under curing times from 2 to 28 days.

Consoli et al. (2017).
‘Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils”.
Journal of Materials in Civil Engineering 29 (6), 06017004




Fine-Grained Soil-Cement Dosage ENG

/\ Dispersive Soil + Cement - 3 Days
Y Dispersive Soil + Cement - 7 Days
> Dispersive Soil + Cement - 28 Days
[ Botucatu Residual Soil + Cement - 7 Days
<> Red Silty Clay + Cement (0=15%) - 7 Days
4 Red Silty Clay + Cement (0=18%) - 7 Days
£ Silty Soil + Cement - 7 Days
Silty Soil (0n=17%) + Cement - 7 Days
WV Silty Soil (©=20%) + Cement - 7 Days
P Silty Soil (©=23%) + Cement - 7 Days
<» Organic Soft Clay + Cement - 7 Days
(O London Clay + Cement - 7 Days
Q,/ Qupua = 4.86 X 10°(n/C **)2® (R2=0.91)

OV eOVLD
OV e 0OVLD

q./q, (n/C,2%=30)

Normalisation of g, (for the whole range of 1)/C,,%?®) with adjusted porosity/cement index for all fine-grained
soils studied and considering distinct curing periods (3, 7 and 28 days).

Consoli et al. (2016)
“A unique relationship determining strength of silty/clayey soils-Portland cement mixes”.
Soils and Foundations, 56 (6), 1082-1088.




Fine-Grained Soil-Cement Dosage P(}é
. : EN

a

Curve obtained using Eq. (7) and lab-testing data _- R UFRGS

A A AWC ?=200->q,=18174kPa
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coal fly ash-Portland cement.
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Consoli et al. (2016)
“A unique relationship determining strength of silty/clayey soils-Portland cement mixes”.
Soils and Foundations, 56(6), 1082-1088.



Compacted filtered iron ore tailings—Portland cement blends &

X lron ore tailings

Percent finer by weight (%)

7, (KN/m?)

0.001 0.010 0.100 1.000 10.000

+ Standard effort
¥ Modified effort
_ .qr = 80%

§ = 100%

Dry unit weight -

Particle diameter - & (mm)

—T T T
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Moisture content - w (%)

CONSOLI, N. C.; VOGT, J. C.; SILVA, J. P.; CHAVES, H. M.; SCHEUERMANN FILHO, H. C.; MOREIRA, E. B.; LOTERO, A. (2022).
Behaviour of compacted filtered iron ore tailings—Portland cement blends: New Brazilian trend for tailings disposal by stacking.
Applied Sciences, 12, 836 (DOI: 10.3390/app12020836).
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Compacted filtered iron ore tailings—Portland cement blends \?GS -
% _
ENG
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CONSOLI, N. C.; VOGT, J. C.; SILVA, J. P.; CHAVES, H. M.; SCHEUERMANN FILHO, H. C.; MOREIRA, E. B.; LOTERO, A. (2022).
Behaviour of compacted filtered iron ore tailings—Portland cement blends: New Brazilian trend for tailings disposal by stacking.
Applied Sciences, 12, 836 (DOI: 10.3390/app12020836).
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Compacted filtered iron ore tailings—Portland cement blends - ?GS
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CONSOLI, N. C.; VOGT, J. C.; SILVA, J. P.; CHAVES, H. M.; SCHEUERMANN FILHO, H. C.; MOREIRA, E. B.; LOTERO, A. (2022).

Behaviour of compacted filtered iron ore tailings—Portland cement blends: New Brazilian trend for tailings disposal by stacking.
Applied Sciences, 12, 836 (DOI: 10.3390/app12020836).
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Durability, strength, and stiffness of compacted gold tailings — cement mixes ENG
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Consoli, N. C., Peccin, A., Sosnoski, J., Nierwinski, H. P. (2018)
“Durability, strength, and stiffness of compacted gold tailings — cement mixes”.
Canadian Geotechnical Journal, 55(6), 486-494.
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CONSOLI, N. C.; VOGT, J. C.; SILVA, J. P.; CHAVES, H. M.; SCHEUERMANN FILHO, H. C.; MOREIRA, E. B.; LOTERO, A. (2022).

Behaviour of compacted filtered iron ore tailings—Portland cement blends: New Brazilian trend for tailings disposal by stacking.

Applied Sciences, 12, 836 (DOI: 10.3390/app12020836).
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CONSOLI, N. C.; VOGT, J. C.; SILVA, J. P.; CHAVES, H. M.; SCHEUERMANN FILHO, H. C.; MOREIRA, E. B.; LOTERO, A. (2022).

Behaviour of compacted filtered iron ore tailings—Portland cement blends: New Brazilian trend for tailings disposal by stacking.
Applied Sciences, 12, 836 (DOI: 10.3390/app12020836).
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cements for filtered

compacted cemented dry
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Research lines related to Sustainability \g%

UFRGS

e Development of new alternatives for
earthwork solutions that minimize
environmental 1mpacts, and are more
economical and maximize social welfare;

 Environmental, economic, and social life

cycle analysis for determining sustainable
solutions.
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Scanning electron microscopy with EDS spectrogram for (a) quicklime and (b)
hydrated lime from eggshell.
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Consoli, N. C.; Lotero, A.; Saldanha, R. B.; Scheuermann Filho, H. C.; Moncaleano, C. (2020).
“Eggshell produced limes: Innovative materials for soil stabilization.”
Journal of Materials in Civil Engineering, 32(11), 06020018



Patent of a new binder "

QUICKLIME and HYDRATED LIME from
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X-ray diffractometry of ground glass, lime and blend of both

Consoli, N. C.; Carretta, M.; Leon, H. B.; Scheuermann Filho, H. C.; Tomasi, L. (2019). “Strength and

stiffness of ground waste glass—carbide lime blends.”
Journal of Materials in Civil Engineering, 31(10), 06009010
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Unconfined compressive strength (qu) versus initial shear stiffness (Go) for sand—ground glass—carbide lime
compacted blends considering 20 and 30% of ground glass; 3, 5 and 7% of carbide lime; and the studied dry

unit weights considering 7 days of curing.

Consoli, N. C. et al. (2021).
“Ground waste glass—carbide lime as a sustainable binder stabilising three different silica sands.”
Géotechnique, 71(6), 480-493.




Durability, strength and stiffness of green stabilized sand EN G
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Consoli, N. C. et al. (2021).
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Lime—ground glass—sodium hydroxide as an enhanced sustainable binder stabilizing silica sand EN G
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Consoli, N. C.; Daassi-Gli, C. P. A. et al. (2021).
“Lime—ground glass-sodium hydroxide as an enhanced sustainable binder stabilizing silica sand.”
Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 06021011.




ACIDIFICATION

PHOTOCHEMICAL
OXIDATION
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129 ) 1.15 - 1.16
R \/
OZONE LAYE DEPLETION OF
DEPLETION ABIOTIC RESOURCES

w3 (3% lime and 19 kN/m3)
w5 (5% lime and 18.35 kN/m3)
wmml-7 (7% lime and 17.91 kN/m3)

Rocha, C. G.; Passuelo, A.; Consoli, N. C. et al. (2016).
“Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco.”
Journal of Cleaner Production, 139, 309-318.
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IMPROVEMENT USING
BINDERS
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TAILINGS IN SITU IMPROVEMENT USING BINDERS (for safe decommissioning) ENG
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Upstream dam tailings improvement through deep mixing
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Consoli, N.C.; Tomasi, L. F.; Marques, S. (2023)
“Cement enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning ”
Journal of Materials in Civil Engineering, ASCE (DOI: 10.1061/(ASCE)MT.1943-5533.0004741)




Gold tailings with high void ratio of about 1.10 and high moisture content (same as found
in the field) mixed with Portland cement

Specimens of gold tailings - Portland cement
gold tailings blends

Gold tailings with high void ratio of 1.10 and high moisture
content of about 40%, mixed with Portland cement

Consoli, N.C.; Tomasi, L. F.; Marques, S. (2023)
“Cement enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning ”
Journal of Materials in Civil Engineering, ASCE (DOI: 10.1061/(ASCE)MT.1943-5533.0004741)
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Cement enhancing mechanical behavior of tailings in situ  EFNG
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Consoli, N.C.; Tomasi, L. F.; Marques, S. (2023)

“Cement enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning ”

Journal of Materials in Civil Engineering, ASCE (DOI: 10.1061/(ASCE)MT.1943-5533.0004741)
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Cement enhancing mechanical behavior of tailings in situ ~ ======
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Stress paths of reconstituted gold tailings
under undrained triaxial tests, as well as
120 - slight (6 and 12 kg/m?) amounts of Portland
cement gold tailings

Stress—strain—pore-pressure curves for the
undrained triaxial tests on reconstituted state gold
tailings, as well as slight (6 and 12 kg/m3)
amounts of Portland cement gold tailings

Consoli, N.C.; Tomasi, L. F.; Marques, S. (2023)
“Cement enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning ”
Journal of Materials in Civil Engineering, ASCE (DOI: 10.1061/(ASCE)MT.1943-5533.0004741)
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Cement enhancing mechanical behavior of tailings in situ
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tailings

Consoli, N.C.; Tomasi, L. F.; Marques, S. (2023)
“Cement enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning ”
Journal of Materials in Civil Engineering, ASCE (DOI: 10.1061/(ASCE)MT.1943-5533.0004741)
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Consoli, N.C.; Tomasi, L. F.; Marques, S. (2023)
“Cement enhancing mechanical behavior of tailings behind upstream tailings dam for safe decommissioning ”
Journal of Materials in Civil Engineering, ASCE (DOI: 10.1061/(ASCE)MT.1943-5533.0004741)
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