Water budget analysis in Northern Cyprus

TA, Adnan Hilal TA, Nuray Vakitbilir Asst Prof Dr, Bertuğ Akıntuğ

METU NCC

Outline

- Introduction
- Study Area and Data
- Background and Literature Review
- Methodology
- Results and Discussion
- Conclusion

Figure 1. freshwater resources distribution

Source: http://www.unesco.org/water/wwap

Figure 2. Hydrological cycle

Source: https://eschooltoday.com/learn/the-water-cycle

Introduction

Background and Literature Review

Study Area and Data

Methodology

Results and Discussion

Conclusion

Source: Gude, 2017

Literature Review

Introduction

Reference	Methodology	Country	
Mandal et al.(1999)	TM model	India	
Nachiappan et al.(2002)	Isotope and chloride mass	Northern India	
Boulet et al.(2000)	Water and energy balance	Lake/ Mexico	
Jasrotia et al.(2009)	TM model and GIS	India	
Xu, C. Y., & Singh, V. P. (2005)	TM model	Sweden and China	
Bhattarai and Dutta (2007)	TM model and GIS	Thailand	
Xu et al.(2007)	Conceptual water balance	Surface runoff China	
Nugroho et al. (2019)	TM model	Indonesia	
Ngongondo et al. (2015)	TM model	Malawi	

Table 1. Literature review of water balance analyses

Thornthwaite and Mather Model (TM)

Five components

- ☐ Soil Storage Capacity (STC)
- ☐ Potential Evapotranspiration (PET)
- Actual Evapotranspiration (AET)
- ☐ Water Surplus (S)
- Runoff

Figure 4. Water budget components in TM model

☐ Monthly Rainfall

Introduction

- Monthly Temperature
- □ Soil map and land cover map
- ☐ Digital elevation map

- 33 stations
- 36 hydrological years (1978-79 and 2014-15)

Soil Storage Capacity (STC)

Potential Evapotranspiration (PET)

$$W = \frac{4.95 \times e^{0.062 \times T}}{100}$$

d: Number of days in the month

D: Monthly daylight hours

T: Mean monthly temperature

Actual Evapotranspiration (AET)

Water Surplus (S) and Runoff (RO)

 $\square RO_{total} = 0.05 \times P_{total} + 0.5 \times S + RS$

 P_{total} : Monthly total rainfall

S: Surplus

RS: Remaining surplus

Runoff streams map

- ☐ Create a Runoff streams map from **DEM** in ArcGIS
- ☐ Combining Runoff depth with the Runoff streams

Introduction

Actual Evapotranspiration (AET) % Heat Map

- □ Low AET% on the northern coast
- ☐ High AET% in the southern part of the study area

Figure 8. Spatial distribution of AET across Northern Cyprus

Runoff Depth Heat Map

- ☐ High Runoff depth on the northern coast
- □ Low Runoff depth in the southern part of the study area

Figure 6. Spatial distribution of Runoff across Northern Cyprus

Main Runoff Streams

Introduction

- ☐ The eastern region has the most significant 2 streams
- ☐ The Northern Coast has only small streams

Figure 8. Spatial distribution of Runoff streams across Northern Cyprus

Runoff in the Main Cities

■ 8.1 million m³/year

Introduction

☐ Significant variation in annual runoff values

	Δυσφοσο	Maximum	Minimum		Average annual
	Average		annual	Dense urban	available water
Polygon name			runoff	area (km²)	for harvesting
	(mm)	runoff (mm)	(mm)		(m^3)
Lefkosa	78.7	247.3	5.2	27.5	2,164,250
Gazimagusa	120.7	373.7	9.2	25	3,017,500
Girne	222.4	573.2	28.5	13.1	2,913,440

Highlights of Northern Cyprus Water Balance

- Rainfall ~ 1.2 billion m³ annually on average
- Most of the rainfall is lost due to AET 84%
- A significant temporal variation has been observed in runoff
- However, there is a chance of a significant rainfall harvesting
 - From the main runoff streams 1.43%
 - From the main cities \longrightarrow 0.13%

Rainfall

Figure 9. Pie chart of the water balance results in Northern Cyprus

Introduction

REFERENCES

- Abbasighadi, A. (2013). A Cost-Benefit Analysis of a Reverse Osmosis Desalination Plant with and without Advanced Energy Recovery Devices. Retrieved from http://i-rep.emu.edu.tr:8080/xmlui/handle/11129/3279
- Al-Karaghouli, A., & Kazmerski, L. L. (2013, August 1). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2012.12.064
- Al-Mutaz, I. S., & Al-Ghunaimi, M. A. (2001). Performance of Reverse Osmosis Units at High Temperatures
- Anwar, Sembiring, A., & Irawan, A. P. (2020). Analysis of the potential of crust formation and corrosiveness in the Way Rilau PDAM lampung distribution network using the langelier saturation index method. In IOP Conference Series: Materials Science and Engineering (Vol. 852, p. 012040). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/852/1/012040
- Arslan, B., & Akün, E. (2019). Management, contamination and quality evaluation of groundwater in North Cyprus. Agricultural Water Management, 222, 1–11. https://doi.org/10.1016/j.agwat.2019.05.023
- Axelsson, G., & Stefánsson, V. (2003). Sustainable management of geothermal resources. International Geothermal Conference.

 Retrieved from http://www.jardhitafelag.is/media/pdf/s12paper075.pdf

Thank you for your attention

REFERENCES

- Berezovskaya, S., Yang, D., & Hinzman, L. (2005). Long-term annual water balance analysis of the Lena River. Global and Planetary Change, 48(1-3 SPEC. ISS.), 84–95. https://doi.org/10.1016/j.gloplacha.2004.12.006
- Cakal, S. (2016). Palmer Drought Analysis of North Cyprus. Middle East Technical University, Northern Cyprus Campus. Retrieved from http://etd.lib.metu.edu.tr
- Chowdhury, R. K., & Beecham, S. (2009). Australian rainfall trends and their relation to the southern oscillation index. Hydrological Processes, 24(4), n/a-n/a. https://doi.org/10.1002/hyp.7504
- Coscarelli, R., & Caloiero, T. (2012). Analysis of daily and monthly rainfall concentration in Southern Italy (Calabria region). Journal of Hydrology, 416–417, 145–156. https://doi.org/10.1016/J.JHYDROL.2011.11.047
- Huang, B., Pu, K., Wu, P., Wu, D., & Leng, J. (2020). Design, Selection and Application of Energy Recovery Device in Seawater Desalination: A Review. Energies, 13(16), 4150. <u>https://doi.org/10.3390/en13164150</u>
- Kummu, M., Tes, S., Yin, S., Adamson, P., Józsa, J., Koponen, J., ... Sarkkula, J. (2014). Water balance analysis for the Tonle Sap Lake-floodplain system. Hydrological Processes, 28(4), 1722–1733. https://doi.org/10.1002/hyp.9718

Polygons

Figure 6. Boundaries of the 33 polygons in the study area (Cakal, 2016)

Runoff streams map -Catchment

Figure 7. Runoff discharge from a catchment

11

Northern Cyprus Water Balance

Rainfall

Rainfall ~ 1.2 billion m³ and

Introduction

Figure 9. Pie chart of the water balance results Northern Cyprus

