Performance of Hardened Cement Mortars Prepared With Waste Glass and Brick

Hasan Dilek¹, Pınar Akpınar^{2*}

¹ European University of Lefke, <u>21170039@std.eul.edu.tr</u>

² Bahçeşehir Cyprus University, <u>pinarakpinar@baucyprus.edu.tr</u>

GAU

BAU Bahçeşehir

ODTÜ METU

İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS NCE2022.KTIMO.ORG 2nd National Civi Engineering Symposium 2. Ulusal İnşaat Mühendisliği Sempozyumu 14-15 Eylül 2022 14-15 September 2022 2nd Nature Inspired Solutions For The Built **Environment Conference** (NISE) 2. Uluslararası Yapılar İçin Doğadan İlham Alan Çözümler Konferansı 16 Evlül 2022 International Workshop on Advances in Laboratory **Testing of Liquefiable** Soils Sıvılasan Zeminlerde Laboratuvar Uygulamaları Uluslararası Çalıştayı 17 Eylül 2022 Acapulco Resort Convention SPA Hote

North Cyprus

LABORATORY STRES

STRENGTH TESTING OF

14 -17 Eylül 2022 14 - 17 September 2022

Outline:

- Introduction:
 - General Aspects & Definition of Problem
 - Objectives and Scope
- Methodology:
 - Materials Used and Sample Preparation
 - Testing of Mortars in Hardened State
- Results and Discussions
 - Compressive Strength Test Results for Hardened Mortars
 - Flexural Strength Test Results Hardened Mortars
- Conclusive Remarks
- References

Introduction: General Aspects

- Concrete is the most popular material for construction.
- Approximately 75% of volume of concrete is formed from aggregates.
- Quarries on Beşparmak mountains in T.R.N.C are not operated in an environmentally friendly manner.
- Natural resources are depleted because of excessive, uncontrolled and mis-managed excavation.

BAU Bahçeşehir Cyprus University

North Cyprus

14 - 17 September 2022

Introduction: General Aspects

- Additionally, disposal of waste materials to nature is an another environmental problem for T.R.NC.
- Like concrete, cement mortar is also an extensively used construction material. Possibility of using recycled materials in mortars can be also considered.
- Lack of experimental information on the performance of cement mortars produced with the use of different recycled materials (waste brick, and waste glass) has been detected in the literature.

Introduction: Objectives and Scope

- Carrying out experimental studies to investigate performance of mortars produced with;
 - Powdered glass (RGA)
 - Powdered brick (RBA)

as a replacement to natural sand.

- Performance of waste-containing cement mortars is investigated :
 - Compressive strength (7 and 28 days)
 - Flexural strength (7 and 28 days)

Methodology: General Aspects

Mix Name	Natural <i>(Quarried)</i> Aggregate (NA)	Recycled Brick Aggregate (RBA)	Recycled Glass Aggregate (RGA)		
Mix 1 (Control Set)	100%	0	0		
Mix 2a	50%	50%	0		
Mix 2b	0	100%	0		
Mix 3a	50%	0	50%		
Mix3b	0	0	100%		

All mortar mixes were produced to have the same flow characteristics. ۲

GAU

BAU Bahçeşehir Cyprus University

DDTÜ OUUSLARARASI KIBRIS ÜNIVERSITESI

Targetted slump: 260-270mm • (based on the results of previous studies)

ER OF CIVIL ENGINEERS

North Cyprus

Methodology:

• Distribution and amount of specimens for each mix at every testing age:

Mix No		W/C ratio	No of prisms produced for strength testing		
	Mix definition	required for			
		targeted slump	7 days	28 days	
	Control Set with			h testing	
1	100% Natural	0.6	3		
	Sand				
	50% Natural				
2a	Aggregate and	0.72	3	2	
	50% Waste Brick	0.73		3	
	Aggregate				
2b	100% Waste	0.75	2	2	
	Brick Aggregate	0.75	3	3	
	50%Natural				
2-	Aggregate and	0.65	2	2	
3a	50% Waste Glass	0.65	3	3	
	Aggregate				
3b	100% Waste	0.6	2	2	
	Glass Aggregate	0.6	3	3	
		· · ·	Total	30	

Methodology: Selected Starting Criteria

Exact amount of used cement, water and aggregate;

		Material Content of Used Sample								
Mix Name	Water (gr)	Cement (gr)	Fine Aggregates (gr)							
	Potable	CEM I	Natural Aggregates				Waste Aggregates			
	Water	Туре	(Quarry Sand)			(Waste Brick or Glass)				
			0.15 mm	0.3 mm	0.6 mm	1.18 mm	0.15 mm	0.3 mm	0.6 mm	1.18 mm
Mix 1 (Control Set)	2017	3361	672	1344	2017	2689	0	0	0	0
Mix 2a	2914	3993	260	512	779	1038	260	512	779	1038
Mix 2b	2975	3967	0	0	0	0	516	1031	1547	2063
Mix 3a	2155	3315	332	663	995	1326	332	663	995	1326
Mix 3b	2017	3361	0	0	0	0	672	1344	2017	2689

Methodology: Materials Used

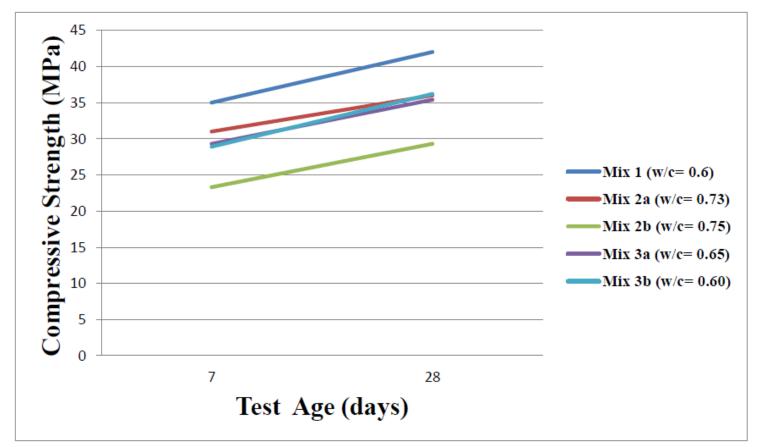
• Waste materials were used as aggregates in the study;

Waste Brick

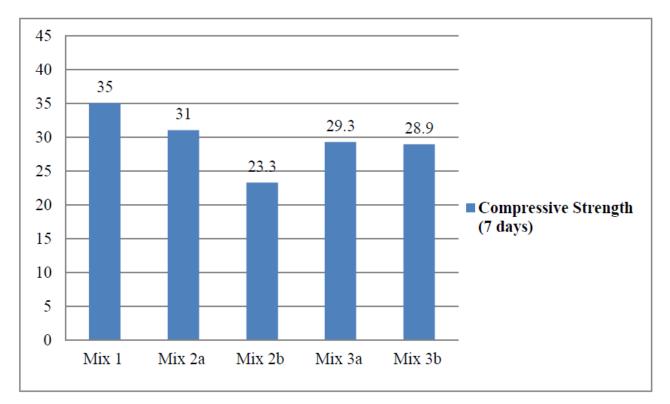
Waste Glass

Methodology: Strength Testing for Hardened Mortars

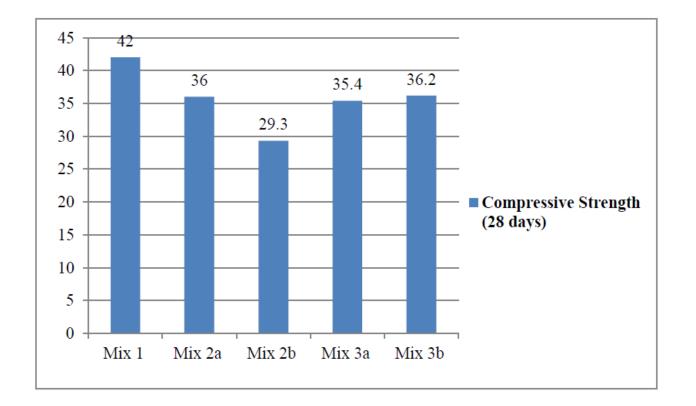
According to EN 196-1:2005


Compressive Strength Testing

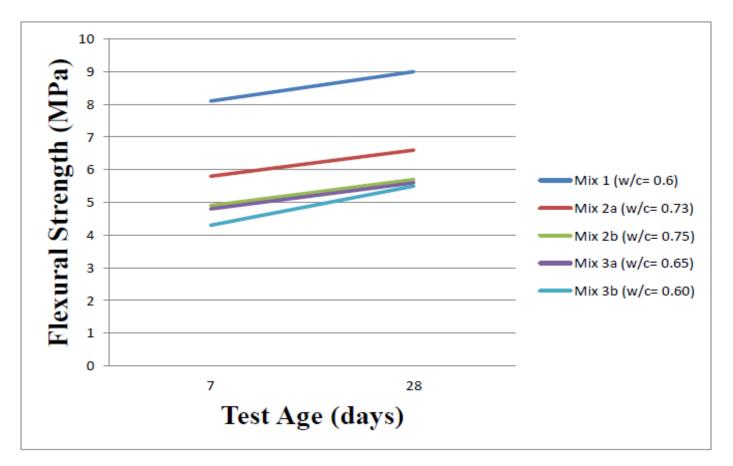
Flexural Strength Testing



Results and Discussions: Compressive Strength Test



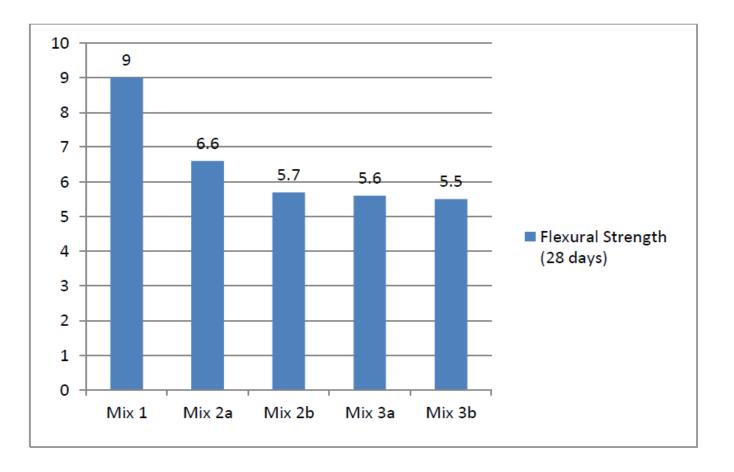
Results and Discussion: Compressive Strength Test



Results and Discussion: Compressive Strength Test



Results and Discussion: Flexural Strength Test



Results and Discussion: Flexural Strength Test

Results and Discussion: Flexural Strength Test

Conclusions

- The investigation contributed to the literature on performance of mortar produced with waste glass and waste brick in a systematical way.
- Mortars produced from waste brick and waste glass aggregates have high water demand to acquire the targeted flow compared to samples including same percentage of waste glass.
- Mortars produced from waste glass aggregates have similar water demand with control mixture.

Conclusions

- The highest flexural and compressive strength among mixes were acquired from control mix.
- Sample containing 50% brick and sample including 50% glass had 14.29% and 15.71% less compressive strength than control set at 28 days, respectively.
- Additionally, mortars including 100% brick and mortars containing 100% waste glass had 30.24% and 13.81% less compressive strength than control set at 28 days, respectively.

Conclusions

- Higher waste material content produces to lower flexural and compressive strength at 7 and 28 days.
- Moreover, Sample containing 50% brick and sample including 50% glass had 11.43% and 16.29% less compressive strength than control set at 7 days, respectively.
- Additionally, mortars including 100% brick and mortars containing 100% waste glass had 33.43% and 17.43% less compressive strength than control set at 7 days, respectively.

BAU Bahçeşehir Cyprus University

North Cyprus

14 - 17 September 2022

LABORATORY STRESS STRENGTH TESTING OF GEOMATERIALS

TECHNICAL COMMITTEE 101

Thank You For Your Attention...

Performance of Hardened Cement Mortars Prepared With Waste Glass and Brick

Hasan Dilek¹, Pınar Akpınar^{2*}

¹ European University of Lefke, <u>21170039@std.eul.edu.tr</u>

² Bahçeşehir Cyprus University, <u>pinarakpinar@baucyprus.edu.tr</u>

GAU

BAU Bahçeşehir

ODTÜ METU

İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS NCE2022.KTIMO.ORG 2nd National Civi Engineering Symposium 2. Ulusal İnşaat Mühendisliği Sempozyumu 14-15 Eylül 2022 14-15 September 2022 2nd Nature Inspired Solutions For The Built **Environment Conference** (NISE) 2. Uluslararası Yapılar İçin Doğadan İlham Alan Çözümler Konferansı 16 Evlül 2022 International Workshop on Advances in Laboratory **Testing of Liquefiable** Soils Sıvılasan Zeminlerde Laboratuvar Uygulamaları Uluslararası Çalıştayı 17 Eylül 2022 Acapulco Resort Convention SPA Hote

North Cyprus

LABORATORY STRES

STRENGTH TESTING OF

14 -17 Eylül 2022 14 - 17 September 2022

