OPEN CHANNEL GEOMETRY OPTIMIZATION INCORPORATING CLIMATE CHANGE TO MITIGATE ASSET LOSSES

ASST. PROF. DR. İBRAHİM BAY

EUROPEAN UNIVERSITY of LEFKE

GAU

BAU Bahçeşehir Cyprus University ODTÜ METU

ULUSLARARASI

KIBRIS ÜNIVERSITESI

LABORATORY STRESS STRENGTH TESTING OF GEOMATERIALS

for

TECHNICAL COMMITTEE

0

Content

- Story
- Challenge
- Open Channel Flow
- Channel Sections
- Optimisation
- Conclusion

Whole story is about understanding the Hydrologic Cycle.

Is it manageable?

Yes! Indeed!

THE HYDROLOGIC CYCLE

Surface Runoff (**SR**, also known as overland flow) is the flow of water occurring on the ground surface when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil.

Factors Affecting the SR;

Type of precipitation (rain, snow, sleet, etc.) Rainfall intensity, Rainfall amount, Rainfall duration, Distribution of rainfall over the watersheds, and Density of the hardstanding areas.

Is it manageable?

Yes! Indeed!

Hardstanding areas, increases impermeable surfaces that quickens the flush discharges after a storm as surface runoff.

All hardstanding areas, in developed regions, are normally drain into **channels** those are designed to transmit stormwater.

Is it manageable?

Yes! Indeed!

Time (hours)

A typical hydrograph

Hyetograph, shows how much it has rained, usually recorded/measured in mm (or kg) *CAN ALSO BE FORCASTED*.

Hydrograph, shows rate of flow (called discharge), usually measured in m³/s CAN ALSO BE ESTIMATED.

Challenge

... here is to understand the crucial term called **CLIMATE CHANGE**.

NOT THE GLOBAL WARMING!

LABORATORY STRESS STRENGTH TESTING OF GEOMATERIALS

DODTÜ METU BOTTÜRETRE

GAU

14 -17 Eylül 2022 14 - 17 September 2022

North Cyprus

Challenge... (in understanding the Climate Change)

5 effects of climate change

frequent and intense

- drought,
- storms,
- heat waves,
- rising sea levels,
- melting glaciers and,
- warming oceans.

North Cyprus

14 - 17 Evlül 14 - 17 September 2022

Open Channel Flow

Channel geometries may differ but all transmitting water with a free surface.

Section	Area A	Top width T	Wetted perimeter P
$\begin{array}{c} \overleftarrow{} T \longrightarrow \\ \overrightarrow{} \\ \overleftarrow{} \\ \overrightarrow{x} } \\ \overrightarrow{} \\ \overrightarrow{x} } \\ \overrightarrow{x} } $	By	В	B + 2y
$\begin{array}{c} \overleftarrow{k} T \rightarrow \overrightarrow{y} \\ 1 \overbrace{z} \\ Triangular \end{array} $	zy^2	2zy	$2y\sqrt{1+z^2}$
$T \xrightarrow{T} y$	$By + zy^2$	B + 2zy	$B + 2y\sqrt{1 + z^2}$
$D = \begin{bmatrix} & & T & \rightarrow \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	$\frac{D^2}{8}(2\theta - \sin 2\theta)$	$D\sin\theta$	θD

TECHNICAL COMMITTEE 101 0

LABORATORY STRESS STRENGTH TESTING OF GEOMATERIALS

K MA

ODTÜ OJUSLARARASI KIBRIS ÖNIVERSITESI

BAU Bahçeşehir Cyprus University

EVEN IN PIPE SECT

İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS North Cyprus

K.T.M.M.O.B.

Optimum Section

Main source of the flow in all geometries is the **gravity**!

Amongst all, most economical solution is the one giving the maximum discharge for the selected section.

Section	Area A	Top width T	Wetted perimeter P
$\begin{array}{c} \overleftarrow{} T \longrightarrow \\ \overleftarrow{} \\ \overrightarrow{x} } \\ \overrightarrow{x} } \\ \overrightarrow{x} \\ \overrightarrow{x} \\ x$	By	В	B + 2y
$\begin{array}{c} & T \rightarrow \end{array}$	zy^2	2zy	$2y\sqrt{1+z^2}$
$T \xrightarrow{T} y$	$By + zy^2$	B + 2zy	$B + 2y\sqrt{1 + z^2}$
$D = \begin{bmatrix} x & T & \rightarrow \\ & & & & \\ & & & \\ & & & \\ & & & \\ & $	$\frac{D^2}{8}(2\theta - \sin 2\theta)$	Dsinθ	θD

Open Channel Flow Velocity

Antoine de **Chezy**

$$V = C\sqrt{R_h S_o}$$

Philippe - Robert
Gauckler – Manning

$$V = \frac{k}{n} R_h^{2/3} S_o^{1/2}$$

V is average velocity [m/s]C is the Chezy coefficient R_h is the hydraulic radius (A/P) [m] S_0 is the hydraulic gradient V is average velocity [m/s]k is the conversion factor between SI and Imperial n is the Gauckler-Manning coefficient R_h is the hydraulic radius (A/P) [m] S_0 is the hydraulic gradient

> LABORATORY STRESS STRENGTH TESTING OF GEOMATERIALS

TECHNICAL COMMITTEE

ODTÜ OUUSLARARASI KIBRIS ÖNIVERSITESI

GAU

BAU Bahçeşehir Cyprus University 2

14 -17 Eylül 2022

North Cyprus

Open Channel Flow Velocity and Discharge

General expression for the mean velocity in an open channel flow is

$$V = kR_h^a S^b$$

or based on the continuity, the discharge in an open channel flow is

$$Q = AkR_h^a S^b$$

V is average velocity [m/s]
k is the flow resistance factor
A is the cross-sectional area [m²]
a and b are hydraulic components

Q is discharge $[m^3/s]$ R_h is the hydraulic radius or hydraulic mean depth S is the channel slope

Channel Section

Simply setting the origin to be at O;

Area
$$A = \int_{0}^{y} \int_{ycot(\pi-\theta)}^{ycot(\theta+B)} dxdy$$

where; $ycot(\pi - \theta) \le x \le ycot\theta + B$ since; $cot(\pi - \theta) = -cot\theta$

Therefore; $A = By + y^2 * cot\theta$ and $P = B + 2y * csc\theta$

Channel Section

Hydraulic, *R*_h becomes;

y can never be zero! to maintain an area for the flow. So; $y \neq 0$.

Setting B = 0 converts the section area into a **TRIANGULAR** channel.

Setting $\theta = 90^{\circ}$ converts the section in rectangular channel.

For simplicity, and minimizing the wetted perimeter, let's consider a Trigular Cross Section

Wetted Perimeter $P = \lim_{B \to 0} (B + 2y * csc\theta) = 2y * csc\theta$

Area

BAU Bahçeşehir Cyprus University

$$A = \lim_{B \to 0} (By + y^2 * \cot\theta) = y^2 * \cot\theta$$

Hydraulic Radius becomes

$$R_{h} = \frac{A}{2y * csc\theta} = \frac{A}{2\left[\sqrt{\frac{A}{cot\theta}}\right]csc\theta}$$

TECHNICAL COMMITTEE LABORATORY STRESS STRENGTH TESTING OF GEOMATERIALS

14 -17 Eylül 2022 14 - 17 September 2022

North Cyprus

Free surface

For an optimum channel slope Minimum required area needs to be maintained so the denominator needs to be minimized in the Hydraulic Radius equation. So denominator needs to be differentiated w.r.t. θ

$$\frac{\partial}{\partial \theta} \left[2 \left[\sqrt{\frac{A}{\cot \theta}} \right] csc\theta \right] = 2\sqrt{A} \frac{\partial}{\partial \theta} \left[\frac{csc\theta}{\sqrt{\cot \theta}} \right] = 0$$

Since $A \neq 0$

Therefore

$$\frac{\partial}{\partial \theta} \left[\frac{csc\theta}{\sqrt{cot\theta}} \right] = 0$$

Solving for the previous equation

 $-csc^2\theta + sec^2\theta = 0$

Therefore;

$$cos\theta = sin\theta \Rightarrow \theta = \frac{\pi}{4}$$

The most economical triangular channel therefore needs to have side slopes to be 45° .

Graphical representation of the above calculations also indicating the turning point of the curve at $\theta = \frac{\pi}{4} = 0,785398$...

Section

Rectangular

 $\leftarrow T \rightarrow$

Triangular

Trapezoidal

Circular

- Using similar approaches and calculations efficiency of regular trapezoidal channel sections with different side slope angles, θ
- Using different number of sides of a regular polygon
- Using efficiency of different sections by employing wetted perimeter, P, as the main parameter

Conclusion

- It is very well know that the best hydraulic section for a flow conformity is a circular section!
- Its engineers duty to find the **OPTIMUM** solution!
- Considering the applicability and minimizing the cost of construction, the **MOST EFFICIENT** section is the half regular hexagon, that is **TRAPEZOIDAL SECTION**.

