OPEN CHANNEL GEOMETRY OPTIMIZATION INCORPORATING CLIMATE CHANGE TO MITIGATE ASSET LOSSES

ASST. PROF. DR. IBRAHIM BAY

EUROPEAN UNIVERSITY of LEFKE

Content

- Story
- Challenge
- Open Channel Flow
- Channel Sections
- Optimisation
- Conclusion

Story

Whole story is about understanding the Hydrologic Cycle.

Is it manageable?
Yes! Indeed!

THE HYDROLOGIC CYCLE

Story

Surface Runoff (SR, also known as overland flow) is the flow of water occurring on the ground surface when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil.

Factors Affecting the SR;
Type of precipitation (rain, snow, sleet, etc.)
Rainfall intensity,
Rainfall amount,
Rainfall duration,
Distribution of rainfall over the watersheds, and

Density of the hardstanding areas.

Is it manageable?
Yes! Indeed!

Story

Hardstanding areas, increases impermeable surfaces that quickens the flush discharges after a storm as surface runoff.

All hardstanding areas, in developed regions, are normally drain into channels those are designed to transmit stormwater.

Is it manageable?

Yes! Indeed!
к.т.м.м.о.в.
ínşaAt MÜHENDISLERİODASI
North Cyprus
CHAMBER OF CIVILENGINEERS
BAU $\begin{gathered}\text { Bahcesehir } \\ \text { Chpus Univesit }\end{gathered}$
果(1) ODTÜ METU 0°

Story

Hyetograph, shows how much it has rained, usually recorded/measured in mm (or kg) CAN ALSO BE FORCASTED.

Hydrograph, shows rate of flow (called discharge), usually measured in $\mathrm{m}^{3} / \mathrm{s}$ CAN ALSO BE ESTIMATED.
к.т.м.м.о.в.

İNŞAATMÜHENDISLERİODASI
Chamber of Civilengineers

Challenge

... here is to understand the crucial term called CLIMATE CHANGE.

NOT THE GLOBAL WARMING!

Challenge... (in understanding the Climate Change)

5 effects of climate change

frequent and intense

- drought,
- storms,
- heat waves,
- rising sea levels,
- melting glaciers and,
- warming oceans.

Open Channel Flow

Channel geometries may differ but all transmitting water with a free surface.

Section	Area A	Top width T	Wetted perimeter P
Rectangular	By	B	$B+2 y$
Triangular	$z y^{2}$	$2 z y$	$2 y \sqrt{1+z^{2}}$
	$B y+z y^{2}$	$B+2 z y$	$B+2 y \sqrt{1+z^{2}}$
	$\frac{D^{2}}{8}(2 \theta-\sin 2 \theta)$	$D \sin \theta$	θD

Optimum Section

Main source of the flow in all geometries is the gravity!

Amongst all, most economical solution
is the one giving the maximum discharge for the selected section.

APPLICABILITY IS A CONSTRAINT $-\boldsymbol{\square} \boldsymbol{m} \rightarrow$

Section	Area A	Top width T	Wetted perimeter P
Rectangular	By	B	$B+2 y$
Triangular	$z y^{2}$	$2 z y$	$2 y \sqrt{1+z^{2}}$
	$B y+z y^{2}$	$B+2 z y$	$B+2 y \sqrt{1+z^{2}}$
	$\frac{D^{2}}{8}(2 \theta-\sin 2 \theta)$	$D \sin \theta$	θD

Open Channel Flow Velocity

Antoine de

Chezy

Philippe - Robert
 Gauckler - Manning

$$
V=C \sqrt{R_{h} S_{o}}
$$

V is average velocity [m / s]
C is the Chezy coefficient
R_{h} is the hydraulic radius (A / P) [m]
S_{0} is the hydraulic gradient

$$
V=\frac{k}{n} R_{h}^{2 / 3} S_{o}^{1 / 2}
$$

$$
V \text { is average velocity }[\mathrm{m} / \mathrm{s}]
$$

k is the conversion factor between SI and Imperial
n is the Gauckler-Manning coefficient
R_{h} is the hydraulic radius (A / P) [m]
S_{0} is the hydraulic gradient

Open Channel Flow Velocity and Discharge

General expression for the mean velocity in an open channel flow is

$$
V=k R_{h}^{a} S^{b}
$$

or based on the continuity, the discharge in an open channel flow is

$$
Q=A k R_{h}^{a} S^{b}
$$

V is average velocity [m / s]
k is the flow resistance factor
A is the cross-sectional area [m^{2}]
a and b are hydraulic components
Q is discharge [$\mathrm{m}^{3} / \mathrm{s}$]
R_{h} is the hydraulic radius or hydraulic mean depth
S is the channel slope

Channel Section

Simply setting the origin to be at O ;

$$
\operatorname{Area} A=\int_{0}^{y} \int_{y \cot (\pi-\theta)}^{y \cot \theta+B} d x d y
$$

where; $y \cot (\pi-\theta) \leq x \leq y \cot \theta+B$

$$
\text { since; } \cot (\pi-\theta)=-\cot \theta
$$

Therefore; $\mathrm{A}=B y+y^{2} * \cot \theta$

$$
\text { and } \mathrm{P}=B+2 y * \csc \theta
$$

Channel Section

Hydraulic, R_{h} becomes;

$$
R_{h}=\frac{A}{P}=\frac{B y+y^{2} * \cot \theta}{B+2 y * \csc \theta}
$$

K.т.м.M.о.в.
íNŞAATMÜHENDISLERİODASI
CHAMBER OF CIVILENGINEERS

Channel Section Optimisation

y can never be zero! to maintain an area for the flow. So; $y \neq 0$.

Setting $B=0$ converts the section area into a TRIANGULAR channel.

Setting $\theta=90^{\circ}$ converts the section in rectangular channel.

Channel Section Optimisation

$$
A=\lim _{B \rightarrow 0}\left(B y+y^{2} * \cot \theta\right)=y^{2} * \cot \theta
$$

Hydraulic Radius becomes

$$
R_{h}=\frac{A}{2 y * \csc \theta}=\frac{A}{2\left[\sqrt{\frac{A}{\cot \theta}}\right] \csc \theta}
$$

K.T.M.M.O.B.

Channel Section Optimisation

For an optimum channel slope
Minimum required area needs to be maintained so the denominator needs to be minimized in the Hydraulic Radius equation. So denominator needs to be differentiated w.r.t. θ

$$
\frac{\partial}{\partial \theta}\left[2\left[\sqrt{\frac{A}{\cot \theta}}\right] \csc \theta\right]=2 \sqrt{A} \frac{\partial}{\partial \theta}\left[\frac{\csc \theta}{\sqrt{\cot \theta}}\right]=0
$$

Since $A \neq 0$

Therefore

$$
\frac{\partial}{\partial \theta}\left[\frac{\csc \theta}{\sqrt{\cot \theta}}\right]=0
$$

Channel Section Optimisation

Solving for the previous equation

$$
-\csc ^{2} \theta+\sec ^{2} \theta=0
$$

Therefore;

$$
\cos \theta=\sin \theta \Rightarrow \theta=\frac{\pi}{4}
$$

The most economical triangular channel therefore needs to have side slopes to be 45°.

Channel Section Optimisation

Graphical representation of the above calculations also indicating the turning point of the curve at $\theta=\frac{\pi}{4}=0,785398 \ldots$

Channel Section Optimisation

- Using similar approaches and calculations efficiency of regular trapezoidal channel sections with different side slope angles, θ

- Using different number of sides of a regular polygon
- Using efficiency of different sections by employing wetted perimeter, P, as the main parameter

к.тм.м.ов.

Channel Section Optimisation

\square

Conclusion

- It is very well know that the best hydraulic section for a flow conformity is a circular section!
- Its engineers duty to find the OPTIMUM solution!
- Considering the applicability and minimizing the cost of construction, the MOST EFFICIENT section is the half regular hexagon, that is TRAPEZOIDAL SECTION.

