# Estimations of savings for recycling construction and demolition waste on islands: A case study of northern part of Cyprus

Cemaliye Özverel Ekinci\* & İme Akanyeti\*\*

\*European University of Lefke
\*\*Cyprus International University

























#### Solid Waste Problem

"Take, make, and dispose" Pattern – Unprecedented level of growth, resource supply risks, waste

Increase in global Solid Waste generation rate
 (0.3 Mt/day in 1900; 3.5 Mt/day in 2010) (Zhang, C. et al., 2022)

Especially in **small islands** solid waste management has more challanges (Wang et al, 2021):

- Geographic isolation
- Tourism-driven economy

















# Construction and Demolition Waste (CDW)

China: 704 Mt in 2018

US: 600 Mt in 2018 (recovery rate 76%)

EU28: 372 Mt in 2020 (exc. excavated soils)

(recovery rate 90%)

1975, EU Directive on Waste 2008, EU Waste Framework Directive Re-use, recycling and other material recovery of hazardous CDW - %70 by weight





















# **CDW** Recovery Rate in EU



























#### **CONSTRUCTION IN NORTH CYPRUS**

 Construction sector is one of the leading economical sectors in North Cyprus especially since 2005 (after Annan Plan)





















#### **C&D** Waste Problem

#### Based rough estimates (2015):

- 110,000 tons construction and demolition waste
- 39,000 tons → Güngör Constructed Landfill
- The rest → Wild dumping



Wild Dumping

THE ONLY INFORMATION AVAILABLE ON CDW IN NORTH CYPRUS

Lack of CDW recovery/recycling → more quarries Currently: 651,000 m<sup>2</sup> area, 36 companies

16 → crashed stone sand

11  $\rightarrow$  float stone

 $6 \rightarrow \text{cut stone}$ 

 $2 \rightarrow gypsum$ 

1 → river sand and gravel (İlseven&Kasot, 2020)





















#### **RELIABLE DATA ON**

**CDW GENERATION RATE** (regional)

**CDW COMPOSITION** 

Essential to develop a sustainable waste management system



















# Research Objectives

- To determine the total and regional generation rate of construction and demolition waste in northern part of Cyprus
- To determine the quantitites of recyclable/recoverable materials in C&D waste
- To estimate the potential energy and material savings considering the implementation of an effective recycling system

















#### Data Collection

- Data on total m<sup>2</sup> of structures with a construction permission per region per year (2009-2020) → collected (Records of Chamber of Civil Engineers)
- Data on total m<sup>2</sup> of demolished/constructed structures → to be collected from municipalities
- Survey results (on the quantities/compsition of CD waste generated during construction and demolition) → to be collected from contractors, engineers, companies
- Assumptions → from the literature





















## PRELIMINARY RESULTS



















#### **Construction Waste**





















### **Demolition vs Construction Waste**























#### Construction Waste Index





Ref: T. Ding, J. Xiao / Waste Management 34 (2014) 2327-2334



















## **Construction Waste Composition**





Ding et al, 2014





















# **Demolition Waste Composition**



|                                                                            |             | GCC 2015   |
|----------------------------------------------------------------------------|-------------|------------|
| Waste Types                                                                | Percentiles | tons/yr    |
| Excavation Material (mainly soils and other naturally occurring materials) |             | 496,668.00 |
| 2. Construction and Demolition Waste                                       |             | 90,965.00  |
| Bricks and Used stones (soft stone, hard stone)                            | 0.32        | 291.00     |
| Concrete and reinforced concrete                                           | 0.93        | 848.00     |
| Asphalt                                                                    | 19.80       | 18,011.00  |
| Metals                                                                     | 2.45        | 2,226.00   |
| Wood                                                                       | 0.13        | 120.00     |
| Packaging (board and plastics)                                             | 0.12        | 110.00     |
| Glass                                                                      | 0.00        | 1.00       |
| Dredging Soils                                                             | 15.83       | 14,398.00  |
| Tiles and ceramics                                                         | 0.05        | 44.00      |
| Residuals (gypsum, mixed waste, etc.)                                      | 60.37       | 54,916.00  |
| TOTAL Table 6 GCC FUROSTAT statistics for type                             | 587,633.00  |            |

Table 6. GCC EUROSTAT statistics for types of waste streams in CDV





















#### Conclusions and Further Studies

- Four times more buildings received project approval in 2019 compared to 2009 resulting in a considerable increase in CDW generation rate.
- Regional waste generation rates should be considered; eg: construction waste is considerable larger than the demolition waste in İskele and Famagusta
- Construction waste index of İskele in 2019 is larger than many developed countries (US, EU, UK and Australia)
- Quantities of waste composition is estimated based on the literature assumptions however local data collection/generation are required for scientific evaluation of the generation and possible recovery rates.



















#### References

Coelho, A., & De Brito, J. (2012). Influence of construction and demolition waste management on the environmental impact of buildings. *Waste Management*, *32*(3), 532-541.

CTCBCA, 2017. CDW Management Plan for TCc.

DPÖ, 2019. Yerel Yönetimler Raporu 2017-2019.

EAY, 2019. Entegre Atık Yönetim Planı, Çevre Koruma Dairesi.

Eurostat Data Browser, 2022. Recovery rate for construction and demolition waste. Website:

https://ec.europa.eu/eurostat/databrowser/view/cei wm040/default/map?lang=en (last accessed: 14/9/2022)

Mah, C. M., Fujiwara, T., & Ho, C. S. (2016). Construction and demolition waste generation rates for high-rise buildings in Malaysia. *Waste Management & Research*, *34*(12), 1224-1230.

Masudi, A. F., Che Hassan, C. R., Mahmood, N. Z., Mokhtar, S. N., & Sulaiman, N. M. (2012). Waste quantification models for estimation of construction and demolition waste generation: a review. *International journal of global environmental issues*, *12*(2-4), 269-281.

Zhang, C., Hu, M., Di Maio, F., Sprecher, B., Yang, X., & Tukker, A. (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. *Science of the Total Environment*, 803, 149892.

















