IMPROVED TRAVELING SALESMAN PROBLEM ANALYSIS WITH NETWORK ANALYSIS TOOL

Assoc. Prof. Dr., Mehmet Metin Kunt

Eastern Mediterranean University
15 September 2022

North Cyprus
$12 y=1$
14-17 Eylül 2022
14-17 September $20 \frac{1}{2} 2$

Outline

Traveling Salesman Problem

Proposed Approach

Case Study

Conclusions and Recommendations

Traveling Salesman Problem

5
sit

Definition of Traveling Salesman Problem

- "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?"

How TSP is applied?

- Decide on an objective function to minimize
- Total travel distance or
- Total travel time
- Create a distance matrix
- Create combinations (factorial of number of cities)
- Obtain total distance/time for every combination
- Select the visit order satisfying the objective function
\|

TSP uses distance matrix

- Using direct distance (as the crow flie
- "Euclidean distance"

- By considering the earth's curvature (Haversine formula)
- Disadvantages
- Exclusion of street network geometry or driving direction
- Calculation errors for small geographical areas

Proposed Approach

Proposed approach

- Overcoming the disadvantage of direct distance approach
- Road network
- Automated data extractıon
- Distance data access
- OpenStreetMap (openstreetmap.com)
- Open Street Routing Machine (OSRM)
- Python

? python

Case Study

Case study

- We are planning to visit the following municipalities from the Union of Cyprus Turkish Engineers and Architects Chambers building: LEFKOŞA
gazimağusa
GiRNE
GÜZELYURT
GÖNYELi

Case study

- We are planning to visit the following municipalities from the Union of Cyprus Turkish Engineers and Architects Chambers building: LEFKOŞA

GAZIMAĞUSA GiRNE

GÜZELYURT
GÖNYELi

Objective function $=$ Minimum total travel distance

弱等 $=$

Data for case study

- Coordinates
(Latitude\&Longitude)
[[35.18294432 33.36765598] [35.19009679 33.36382957] [35.11595405 33.94596524] [35.34030666 33.32076442] [35.19839454 32.9923021]
[35.20515518
33.31782043]]
- On a map

Distance matrix from direct distance

	KTMMOB	LEFKOŞA	GAZIMAĞUSA	GIRNE	GÜZELYURT	GÖNYELI
KTMMOB	0	868	53104	18008	34153	5158
LEFKOŞA	868	0	53563	17154	33773	4503
GAZIMAĞUSA	53104	53563	0	62025	87181	57957
GIRNE	18008	17154	62025	0	33737	15031
GÜZELYURT	34153	33773	87181	33737	0	29586
GÖNYELi	5158	4503	57957	15031	29586	0

Unit of the distance in the table is in meters

Distance matrix from road network

	KTMMOB	LEFKOŞA	GAZIMAĞUSA	GIRNE	GÜZELYURT	GÖNYELI
KTMMOB	0	1445	60892	24708	38691	7145
LEFKOŞA	1609	0	59992	23674	37657	6166
GAZIMAĞUSA	60094	59137	0	79819	93802	61571
GIRNE	25083	24204	80509	0	52179	19948
GÜZELYURT	39360	38481	94726	52093	0	32842
GÖNYELi	6973	6094	62772	20139	32752	0

Unit of the distance in the table is in meters

Order of visit

- Direct distance

KTMMOB
LEFKOŞA
GÖNYELİ
GÜZELYURT
GíRNE
GAZIMAĞUSA
KTMMOB
L = 183.82 km
48.82 km shorter than
actual!

- Road network

KTMMOB
LEFKOŞA
GíRNE
GÖNYELİ
GÜZELYURT
GAZIMAĞUSA
KTMMOB
$\mathrm{L}=232.64 \mathrm{~km}$

Conclusions and Recommendations

- TSP is a tool that optimizes multiple destination problems
- Actual street network geometry and driving direction were considered for more realistic solutions
- Minimizing total travel distance or time for multiple destination trips may reduce demand for energy use and time
- TSP can be applied to other disciplines in civil engineering

